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ABSTRACT’
Lightweight, spaceborne phased arrays
require both local oscillator signal
distribution and compensation for
mechanical deformations that dynamically
occur in orbit. These array deformations
are expressed by a stun of the time and
amplitude weighted characteristic
mechanical xno~es of the array structure,
and their effects on the array pattern
differ from the effects of random phase
perturbations assumed in classical antenna
tolerance theory. A space-fed local
oscillator concept can partially compensate
the effects of array deformations to reduce
array pattern degradation. This concept
also offers potential weight reduction of
the array design and reduced deployment
complexity. This concept uses a local
oscillator radiator on the back side of the
array along with a series of local
oscillator pickup elements connected to the
array elements.

INTRODUCTION

Future satellite applications require
lightweight, deployable phased array
antenna designs. Technology for these
array designs is presently being developed
with significant emphasis on array element
modules and large structures for space
deployment. Practical array designs demand
very lightweight construction techniques,
and consequently the array is no longer a
rigid structure. These arrays dynamically
deform in orbit as a result of attitude
control thrusting, thermal loading, etc.
These dynamic deformations are typically
expressed by a sum of the characteristic
mechanical modes of the array; the rates of
these modes is relatively slow, typically
less than 1/10 Hz. In operation, the
mechanical deformation of the array
radiating surface results in a time-varying
deformation of the array phase distribution
that degrades the array radiation pattern.

*This work W~S supported by the U.S. Air
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The rates with which these deformations
occur are sufficiently slow that the array
surface may be considered frozen for
purposes ‘of examining the pattern
distortion. The pattern degradation caused
by the mechanical deformation (1 and 2)
differs from the results predicted by the
classical antenna tolerance theory (3) .

Many of these array designs will also
require a large number of elements, and
conventional transmission line distribution
networks for the local oscillator signal
have a significant weight. Moreover, the
presence of these distribution networks
further complicates the array surface
folding required by deployment.

CONCEPT DESCRIPTION

A space-fed local oscillator concept, shown
in Fig. 1, provides partial compensation

~LORADIIqTOR

LOPICt(UP~
(Back Side)

ELEMENTRADIATOR*J

(Front Side)

Fig. 1. Space-fed Local Oscillator COncept

for the mechanical deformations. In
operation, the local oscillator :signal is
transmitted by the central radiator mounted
above the back side of the array. A
variety of designs, such as one recently
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described (4), might be used for this
radiator. The transmitted local oscillator
signal is received by pickup elements
located on the back side of the array.
These pickup elements can be used either
with individual array elements or a group
of array elements. In practice, the size
of the group that can be serviced by a
single pickup element is limited by the
uniformity of compensation for deformation
required. Because the pickup elements are
on the back side of the array rather than
the earth-facing side, the blockage from
the array provides protection from
ground-based interference.

The ability of the space-fed local
oscillator to partially compensate the
effects of array deformation can be
visualized from Fig. 2. When the array
surface is displaced towards the local
oscillator radiator, the phase of the local
oscillator signal is advanced relative to
the phase received at the design array
surface. However, the phase of the signal
radiated by the array element is also
retarded by the displacement from the
design array surface. Similarly, if the
array surface is displaced away from the
local oscillator radiator, the phase of the
local oscillator is retarded and the phase
of the field radiated by the array element
is advanced. The compensation is partial
rather than exact because the local
oscillator height is finite and the local
oscillator frequency differs from the
frequency used by the array.
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Fig. 2. Partial Compensation Capability

ANALYSIS

Presently, several structural techniques
for deployable array designs are being
investigated and these designs differ in
their stiffness and mechanical mode

patterns. In addition, the pattern control
requirements differ with application and
the tolerable mechanical deformation also
depends on operating frequency. For
example, in Fig 1, the central area
represents the main structure of the
spacecraft which would be more rigid than
the portions of the array deployed from the
central spacecraft structure. Rather than
dwell on a specific design, the array will
be modeled mechanically as a uniform square
plate, whose mechanical modes are well
known. Because the deformation is slowly
varying, the corresponding degradation of
the radiation pattern will be computed for
an array surface with a fixed mechanical
deformation.

The classical theory for tolerance effects
on antennas (3) assumes random
perturbations of the design phase
distribution. This theory physically

applies to deformations such as the
manufacturing tolerance of reflector
antennas. However, the deformations in
deployable arrays follow a deterministic
form rather than a random model, and the
effects of these deformations differ from
those predicted by a random model (1 and
2) . For example, mechanical modes with odd

s~et~Y result in shifts of the main beam
d~rect~on, an effect not found in the
random model.

The analysis proceeds by calculating the
phase perturbation for both the local
oscillator signal and radiated field caused
by a mechanical displacement from the
design array surface. This phase
perturbation is calculated for all points
on the array surface. The principal
sensitivity in the radiated pattern results
from element displacements normal to the
beam direction; the radiation pattern iS
relatively insensitive to small
displacements in the array plane.

The patterns in array designs are typically
separable in orthogonal coordinates. In
addition, the simple mechanical modeling of
the array surface as a uniform plate
results in a separation of the individual
mechanical modes as well. The result is
that the array pattern can be collapsed
into a line source for pattern computations
of arrays having individual mechanical mode
deformations. This line source model of
the arrav vrovides an easv computational
means to-d~monstrate the &ffecis of
mechanical deformations and the partial
compensation provided by the space-fed
local oscillator concept. These
simplifying assumptions may not be valid
for practical array designs, but the
extension to a two-dimensional array
computation is straightforward.

With the above simplifications, the array
pattern without the space-fed local
oscillator compensation is given by
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v(e) = jL A(x) exp[jkO(AxSin9 + z(x)cose) ]dx
-L

Similarly, the array pattern with the
space-fed local oscillator compensation is
given by

{

v(e) = ~~LA(x)exp kjkOxsinO

+- jkO(x)

[ I}C“Se-* ‘x
In these expressions, A(x) is the amplitude
distribution of the array, the mechanical
deformation at a given instant of time is
given by z(x), k. is the free space wave
number, the width of the array is 2L, H is
the height of the local oscillator radiator
above the array surface, f
oscillator frequency, and +: :: EEcal
frequency used by the array. The second
term in the brackets in eq. 2 is the
compensation provided by the space-fed
local oscillator.

In general, these expressions cannot be
written in a closed form, and the pattern
computations are obtained by numerical
integration. While the mechanical
deformation is generally a sum of the
characteristic modes of the structure, the
computations were performed for a single
mode. In this way, the sensitivity of the
array to particular mechanical modes can be
observed and if mechanical control devices
are to be used in the array design, the

effect of control point locations can be
observed.

Example pattern calculations are presented
in Figs. 3 and 4 for the first order even
and odd modes, respectively. These
patterns are plotted as a function of u,
where m = koL sine is used so that the
spatial patterns are independent of array
size. The amplitude distribution in these
computations is assumed to be uniform. The
peak mechanical deformation in both cases
is 0.2 wavelengths. Both figures contain
the pattern without error (short dashes),
the pattern without compensation (long
dashes), and the pattern with the space-fed

compensation (solid). The even mechanical
modes in Fig. 3 generally result in gain

loss, increased sidelobe levels, and
null-filling, similar to the effects of
random phase error. With the space-fed
local oscillator compensation, the pattern
and gain levels are quite similar to the
error-free pattern. The odd mechanical
modes result in a boresight shift, less
gain loss than the even mechanical modes,

and an unsymmetric sidelobe structure.

These computations were performed with a
relatively short local oscillator height,
namely H/2L = 0.2. As the height of the

local oscillator radiator increases, the

partial compensation of the phase errors
improves. However, an increase in the
height of the local oscillator radiator
also imposes further deployment burdens and
greater stiffness in the boom structure
supporting the local oscillator radiator.
These issues need to be evaluated in a
specific design.

The ratio of the local oscillator frequency
to the RF frequency used by the array is
unity in these computations. At microwave
frequencies, where the mechanical
deformations significantly degrade the
patterns of deployable arrays, th~is ratio
is close to unity. Other computations were
performed with ratios that differ from
unity. These computations indica~te that
the partial compensation provided by the
space-fed local oscillator concept is not
particularly sensitive to the ratio of the
frequencies within the range of choice for
practical applications. The effect of this
ratio can be examined for a specific
design.

CONCLUSIONS

A space-fed local oscillator concept for
deployable spaceborne phased arrays has
been described. This concept provides
partial compensation for the dynamic
deformations that occur on-orbit when

lightweight deployable array designs are
used. This analysis, differs from the
results predicted based on the random phase
perturbations used in the classic antenna
tolerance theory. The space-fed local
oscillator concept provides effective
compensation for peak array deformations
that are as large as 0.3 wavelengths. The
compensated patterns are Comparable to
those achieved by conventional local
oscillator distribution techniques with
about 0.1 wavelength peak mode distortion.
Thus , the structural requirements for the
array are reduced by the space-fed local
oscillator compensation with the benefit of
potential weight reduction.
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Fig. 3 Array Patterns for First-Order Even Mechanical Mode
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Fig. 4 Array Patterns for First-Order
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